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Exercise 38

Solve the telegraph equation

utt − c2uxx + 2aut = 0, −∞ < x <∞, t > 0,

u(x, 0) = 0, ut(x, 0) = g(x), −∞ < x <∞.

Solution

This exercise is the same as Exercise 1.12; α has been replaced with 2a and f(x) is set to 0 here.
The PDE is defined for −∞ < x <∞, so we can apply the Fourier transform to solve it. We
define the Fourier transform here as

F{u(x, t)} = U(k, t) =
1√
2π

ˆ ∞
−∞

e−ikxu(x, t) dx,

which means the partial derivatives of u with respect to x and t transform as follows.

F
{
∂nu

∂xn

}
= (ik)nU(k, t)

F
{
∂nu

∂tn

}
=
dnU

dtn

Take the Fourier transform of both sides of the PDE.

F{utt − c2uxx + 2aut} = F{0}

The Fourier transform is a linear operator.

F{utt} − c2F{uxx}+ 2aF{ut} = 0

Transform the derivatives with the relations above.

d2U

dt2
− c2(ik)2U + 2a

dU

dt
= 0

Expand the coefficient of U .
d2U

dt2
+ 2a

dU

dt
+ c2k2U = 0 (1)

The PDE has thus been reduced to an ODE. Before we solve it, we have to transform the initial
conditions as well. Taking the Fourier transform of the initial conditions gives

u(x, 0) = 0 → F{u(x, 0)} = F{0}
U(k, 0) = 0 (2)

∂u

∂t
(x, 0) = g(x) → F

{
∂u

∂t
(x, 0)

}
= F{g(x)}

dU

dt
(k, 0) = G(k). (3)

Equation (1) is an ODE in t, so k is treated as a constant. We can solve it with the Laplace
transform since t > 0. The Laplace transform of U(k, t) is defined as

L{U(k, t)} =U(k, s) =

ˆ ∞
0

e−stU(k, t) dt,
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so the first and second derivatives transform as follows.

L
{
dU

dt

}
= sU(k, s)− U(k, 0) (4)

L
{
d2U

dt2

}
= s2U(k, s)− sU(k, 0)− dU

dt
(k, 0) (5)

Take the Laplace transform of both sides of equation (1).

L
{
d2U

dt2
+ 2a

dU

dt
+ c2k2U

}
= L{0}

The Laplace transform is a linear operator.

L
{
d2U

dt2

}
+ 2aL

{
dU

dt

}
+ c2k2L{U} = 0

Use equations (4) and (5) here.[
s2U(k, s)− sU(k, 0)− dU

dt
(k, 0)

]
+ 2a[sU(k, s)− U(k, 0)] + c2k2U(k, s) = 0

Expand the left side and substitute equations (2) and (3).

s2U(k, s)−G(k) + 2asU(k, s) + c2k2U(k, s) = 0

The ODE has thus been reduced to an algebraic equation. Factor U(k, s) and bring the terms
without it to the right side.

(s2 + 2as+ c2k2)U(k, s) = G(k)

Divide both sides by s2 + 2as+ c2k2 to solve for U.

U(k, s) =
G(k)

s2 + 2as+ c2k2
.

In order to change back to u(x, t), we have to take the inverse Laplace transform of U(k, s) to get
U(k, t) and then take the inverse Fourier transform of it. Our task now is to write U in a form
that we can easily transform. The inverse Laplace transform we will eventually use is

L−1
{

b

(s− a)2 + b2

}
= eat sin bt, (6)

so we want to write U in this form. Complete the square in the denominator.

U(k, s) =
G(k)

(s+ a)2 + (c2k2 − a2)

Multiply the numerator and denominator by
√
c2k2 − a2.

U(k, s) =
G(k)√
c2k2 − a2

√
c2k2 − a2

(s+ a)2 + (c2k2 − a2)
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Now we’re ready to take the inverse Laplace transform. Use equation (6) here.

U(k, t) =
G(k)√
c2k2 − a2

e−at sin
√
c2k2 − a2t

To make U(k, t) easier to work with, introduce a new variable ω = ω(k) for the square root term.

ω(k) =
√
c2k2 − a2

It’s not necessary to consider the case where c2k2 − a2 < 0 because −i sin iωt = sinhωt. We’re
ready now to take the inverse Fourier transform. It is defined as

F−1{U(k, t)} = u(x, t) =
1√
2π

ˆ ∞
−∞

U(k, t)eikx dk.

Plug U(k, t) into the definition of the inverse Fourier transform to get u(x, t).

u(x, t) =
1√
2π

ˆ ∞
−∞

G(k)

ω
e−at sinωt eikx dk

Recall that sine can be written in terms of exponentials using Euler’s formula.

sinωt =
eiωt − e−iωt

2i

Substituting this expression and bringing e−at in front of the integral, we get

u(x, t) =
e−at√
2π

ˆ ∞
−∞

G(k)

ω

eiωt − e−iωt

2i
eikx dk.

Distribute the terms in the integrand.

u(x, t) =
e−at√
2π

ˆ ∞
−∞

G(k)

2iω
ei(kx+ωt) − G(k)

2iω
ei(kx−ωt) dk.

Therefore,

u(x, t) =
e−at√
2π

ˆ ∞
−∞

[
A(k)ei(kx+ωt) +B(k)ei(kx−ωt)

]
dk,

where

ω = ω(k) =
√
c2k2 − a2

A(k) =
G(k)

2iω

B(k) = −G(k)
2iω

G(k) =
1√
2π

ˆ ∞
−∞

e−ikxg(x) dx.

Comparing this with the solution to Exercise 1.12, we see that we could’ve gotten the same result
by replacing α with 2a and F (k) with 0, as expected.
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